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Abstract. This paper explores defensive strategies in 1 vs. many Stack-
elberg games with partial information. By utilizing the Quantal Response
Model (QRM) and modeling its λ parameter as a stochastic process rep-
resenting bounded rationality, I examine how myopic attackers influence
each other and how a defender’s bounded rationality affects strategy se-
lection, while leveraging attacker congestion to the defender’s benefit.
The defender applies Bayesian learning to λ based on the potential of
the attackers’ strategy profiles, with λ modeled as a gamma distribution
sampled to obtain its value. I empirically evaluate outcomes in games
with varying upper and lower bounds for λ to analyze how different lev-
els of bounded rationality impact the defender’s performance and overall
game outcomes. This study aims to enhance understanding of gameplay
in partial information scenarios, using the Price of Anarchy (PoA) of the
attacking agents as a metric for success.
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1 Introduction, Related Work, and Contributions

Game Theory has its roots in economics, where John Nash established the con-
cept of Nash Equilibrium, stating that in a non-cooperative game, players reach
an equilibrium where no player can gain by unilaterally changing their strategy
[9]. Since then, contributions from economics, mathematics, and computer sci-
ence have expanded its applications across many domains. This paper focuses on
security, utilizing concepts from Stackelberg Games, Quantal Response Model
(QRM) [7], and Exact Potential games [8]. A Stackelberg game involves a leader
(defender) setting their strategy first, followed by followers (attackers) who re-
spond based on the leader’s choice. Exact potential games, where the strategy
one attacker plays affects the value of the strategy all other attackers play, are
used to model the interactions between multiple attackers. The nested structure
of these games, referred to as a metagame, offers a complex but insightful lens
to analyze strategic interactions.

Applying game theory to security defense is well studied, traditionally assum-
ing actors aim to maximize utility at each turn. However, more recent research
explores deception, where actors do not play strictly optimally to deceive ad-
versaries. This has primarily been studied from the attacker’s perspective and
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has been explored from the defender’s perspective less so. Defensive deception
can involve signaling strategies, honeypots, and information asymmetry. Notable
contributions include [4], [3], and [11]. This paper builds on some foundations
by applying the Quantal Response Model to defensive deception in Stackelberg
Security games. There has also been work in congestion analysis, [12], [6], which
can help put this work into context. Where a game theoretic approach is taken
to understand the cost of these adversarial scenarios, and it’s found that often
times allowing congestion to build or using it as part of defense, can lead to a
better outcome for the defender if they had not, as all other attackers are affected
by the congestion and not nearly as successful. This helps to put us in context
the real impacts of using deception and congestion as a defensive strategy in
these partially observable games, where there is much information asymmetry.

The inspiration for this game structure comes from how often in cybersecu-
rity scenarios attackers are not just playing against, say, a single defender, they
are playing against all other attackers; each with their own preferences which
are unknown to the single defender and all other attackers. Hence, attackers
affect how other attackers play, and the defender needs to respond to the ag-
gregate of the attackers; without knowledge of what each attacker’s preferences
over targets are. To derive these dynamics, the attackers compute their strat-
egy profile by playing an iterated best response game, which halts either after
1000 iterations or when we reach an ϵ-Nash strategy profile for the attackers. I
derive an exact potential function to capture the dynamics of this game; with
this potential function, the defender aims to use it to capture the dynamics of
all the attackers to compute his expected level of bounded rationality, or λ to
play. Further inspiration also comes from work regarding network congestion and
defensive strategies, where it’s found in many cases in practice it can be cheaper
and better to allow for network congestion when dealing with large amounts of
attackers, as in aggregate they affect each other, and the cost to the system is
nearly not as high as it could be.

I run various agent-based models (ABM) to simulate this; then analyze our
results, focusing on the Price of Anarchy (PoA) [10].

1.1 Contributions

The key contributions of this paper are:

– Applying the Quantal Response Model (QRM) in the context of defensive
deception, where a defender leverages attacker congestion to their benefit.

– Viewing bounded rationality as a stochastic process in Stackelberg security
games, where from this I model and learn the level of bounded rationality
to play in these games of partial information.

– Utilizing Bayesian learning to adaptively estimate the λ parameter, improv-
ing the defender’s strategy against multiple attackers.

– Empirically evaluating the impact of different levels of bounded rationality
on defender performance and overall game outcomes, enhancing the under-
standing of gameplay in partial information scenarios.
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2 Methodology

2.1 Notation

I will describe the attacker strategy profile as σa (the mixed strategy profile
the attackers have computed in their inner congestion game), and σa∗ as the
optimal strategy profile if there was a benevolent dictator. Ua

i denotes the utility
of attacker i, and Ud denotes the utility of the singular defender. I denote the
lower bound for λ as λlower and denote the upper bound as λupper.

2.2 Game Model

I model our game as a Stackelberg security game with one defender and multiple
attackers. The defender computes their strategy using the Quantal Response
Model (QRM), which I denote as σd, then the attackers respond by playing their
strategy profiles, which I denote as σa. Attackers compute their ϵ-Nash strategy
profiles by playing a congestion game between themselves. Each target has a
penalty (Pj), reward (Rj), and congestion cost (Cj), all randomly initialized in
the range [1, 10].

2.3 Attacker Strategy Computation

Attackers play against the defender and other attackers, considering their pref-
erence vectors. The utility function for attacker i on target j is:

Ua
ij = b1(1− x̂j) ·R2

j − b2 · x̂j · P 2
j − b3(Cj ·N2

j )

where [b1, b2, b3] is a randomly initialized normalized preference vector for each
attacker. The optimization problem is:

max E[Ua
i (x)] =

N∑
j=1

yj · Ua
ij

s.t.
N∑
j=1

yj = 1

0 ≤ yj ≤ 1, ∀j ∈ {1, . . . , N}

where y represents the attacker’s mixed strategy over N targets. Simply, each
attacker is trying to maximize their utility with respect to their preferences, and
their current view of the system.
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2.4 Computation of ϵ-Nash Strategy Profile

To compute the ϵ-Nash strategy profile, I use the Iterated Best Response (IBR)
algorithm:

Algorithm 1 Iterated Best Response Algorithm

1: while not at max iterations and none can deviate do
2: Randomly choose an attacker i from the attacking set
3: Compute new strategy σ′

i

4: if Ui(σ
′
i) > Ui(σi) + ϵ then

5: Update strategy: σi ← σ′
i

6: Move i to final check set
7: else if Ui(σ

′
i) > Ui(σi) then

8: Update strategy: σi ← σ′
i

9: else
10: Keep current strategy: σi ← σi

11: Move i to final check set
12: end if
13: if all attackers in final check set then
14: for each attacker i in the final check set do
15: if Ui(σ

′
i) > Ui(σi) + ϵ then

16: Add i back to the attacking set
17: end if
18: end for
19: end if
20: end while
21: return strategy profile σa once all attackers cannot deviate by more than ϵ or

max iterations is met

The result is σa, the ϵ-Nash strategy profile.

2.5 Exact Potential Function and Congestion Game

Attackers simultaneously play against all other attackers using a congestion
model with an exact potential function:

Φ(σa) =

n∑
j=1

n∑
i=1

yij · Ua
ij(x̂j , Nj) (1)

This allows me to compute the potential of the strategy profile of all attackers.

Lemma 1. The attackers’ congestion subgame with utilities Uij(x̂j , nj) = (1 −
x̂j)Rj−x̂j P

j
a−cj nj and potential Φ(y) =

∑t
j=1

∑n
i=1 yij Uij(x̂j , nj) is an exact

potential game: for any player i and unilateral change from yi to y′i, ∆Ui = ∆Φ.

See Appendix A for the full proof of Lemma 1.



Defensive Deception in Stackelberg Games 5

2.6 Defender Strategy Computation

The defender’s utility function to maximize their mixed strategy profile σd is:

Ud
j = x̂j · Pj − (1− x̂j) ·R2

j + Cj · N̂2
j

where N̂2
j is the squared expected congestion.

Computation of λ The Quantal Response Value for attacker i at target j is:

Ŷi,j =
e(λ·U

a
i,j)∑n

k=1,k ̸=i e
(λ·Ua

k,j)

I model λ as a gamma random variable. The prior of λ is:

Prior(λ) =
βα

Γ (α)
λα−1e−βλ

where α and β are shape and rate parameters. The likelihood of λ is:

L(λ | p) =
k∏

i=1

e(−λpi) = e(−λ
∑k

i=1 pi)

The posterior is:

Posterior(λ | p) ∝ L(λ | p)× Prior(λ) for λmin ≤ λ ≤ λmax

I compute E[λ] as: ∫ λmax

λmin
λ · λα−1e(−λ(β+

∑k
i=1 pi))dλ∫ λmax

λmin
λα−1e(−λ(β+

∑k
i=1 pi))dλ

This expected λ is used in the QRM computation. λmin and λmax are upper
and lower bounds for λ in the interval I’m investigating at that point in the
simulation.

Defender Strategy Computation Using the expected attacker strategy pro-
files, the defender solves the following optimization problem:

maxE[Ud(ŷ)] =

n∑
j=1

[
xj · P 2

j − (1− xj) ·R2
j + Cj · (Nj)

2
]

s.t.
N∑
j=1

xj = 1

0 ≤ xj ≤ 1, ∀j ∈ {1, . . . , N}

where x represents the defender’s mixed strategy over N targets.
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3 Experiments

I conducted various experiments to test the Quantal Response Model (QRM)
in the 1 vs. many Stackelberg game format. Each game involved 5 attackers, 5
targets, and ϵ = 5 for computing the ϵ-Nash strategy profile. Parameters Pj ,
Rj , and Cj were randomly assigned integers ranging from 1 to 10. I examined
λ ranges from 0 to 1, divided into intervals (0 to 0.2, 0.2 to 0.4, etc.), and an
unbounded range were λ ranged from 0 to 1000. The lower bound of the range
is noted as λmin and the upper bound as λmax. One key metric I use to track
performance is the Price of Anarchy (PoA). PoA measures the efficiency of the
attackers’ strategy profile compared to the optimal strategy. Here, it is defined
as the ratio of the potential of σa∗, the optimal strategy profile for that attacker
if I had a ”benevolent dictator,” to the potential of the computed strategy profile

σa: PoA = Φ(σa∗)
Φ(σa) , where Φ(σa∗) is the potential of the optimal strategy profile,

and Φ(σa) is the potential of the strategy profile computed by the attackers. I
ran 600 games for each λ range, with each game consisting of 20 rounds (3,600
games for each seed, 10,800 games in total, and 216,000 game rounds were played
in total).
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(a) Trend of Defender Utility Over Game Rounds

(b) Trend of Price of Anarchy Over Game Rounds

Fig. 1: Comparison of Defender Utility and Price of Anarchy Trends

In figure B I see the trend of the PoA averaged across each lambda range
averaged across all seeds. I see across the board our attackers are converged to a
strategy profile with a relatively high PoA, around 3 to 2.9 across all λ ranges.
In essence, at first, they do better, the PoA drops, but then eventually, over
time they converge to a strategy profile that is significantly worse than what
they could have played, about 3 times as worse. In figure A, I see our defender
converging to a strategy profile that’s better than where they started at the
beginning of each game.

3.1 Analysis of Price of Anarchy Over Game Rounds

Looking at the key results for my agent-based simulations, a few things clearly
jump out. This is a strong indication that in these 1 vs. Many Stackelberg games
of partial information, the defender is able to play reasonably well against all the
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attackers by using the QR Model and using potential functions as an aggregate
to measure how to play against all attackers at once. I see that the attackers
consistently converge to a strategy that’s about 3 times worse than the best
they could have done. What’s also worth noting in my model is that there is no
major difference in results when looking at the different λ ranges. This indicates
that in these games of very partial information, the level of bounded rationality
when making decisions can still be negligible in many cases, as in these security
scenarios have very partial information; but still though if I play against the
aggregate of all attackers, without knowing the specific preferences of attackers,
or the specific strategy each attacker played rather just the impact that the total
had, I can play reasonably well.

What’s also worth noting is that there is a statistically significant positive
correlation between λ and the defender utility in the lambda range of 0− .2, our
lowest lambda range with the highest amount of bounded rationality. This is an
indication that I need to induce high levels of bounded rationality in my model
to see a clear-cut impact of modeling λ as a gamma distribution and applying
learning to it.

3.2 Key Statistical Points

Table 1 summarizes the key statistical correlations observed in the experiments.
These correlations provide insight into the relationship between the defender’s
utility and the Price of Anarchy (PoA) across different λ ranges.

Table 1: Key Statistical Correlations
λ Range Correlation (Defender Utility, λ) Correlation (PoA, λ)

0− 0.2 0.81 -0.82

0.2− 0.4 -0.21 0.29

0.4− 0.6 -0.22 0.18

0.6− 0.8 -0.21 0.30

0.8− 1.0 -0.22 0.29

0− 1000 0.055 0.13

When analyzing the features collected, it is evident that although the de-
fender performed similarly across all λ ranges, there were some noteworthy
points. In the λ range of 0 to 0.2, there was a 0.81 correlation between de-
fender utility and λ value and a -0.82 correlation between PoA and λ value.
This suggests that in scenarios with high bounded rationality, λ significantly
impacts the defender’s performance. As the defender becomes less bounded and
more rational in this range, their performance improves, despite only knowing
the aggregate response of the attackers.

In higher λ ranges, we observe different trends. The correlation between de-
fender utility and λ becomes slightly negative, around -0.2. This indicates that
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higher rationality does not always lead to better outcomes in partially observable
environments for the defender. Instead, increased rationality may hinder the de-
fender’s performance, possibly due to overfitting to observed behaviors that are
not fully representative of the attackers’ strategies.

Conversely, the correlation between PoA and λ is slightly positive, ranging
from 0.18 to 0.30, but these values do not show a strong increase as λ grows.
This means that the increase in λ has a diminishing effect on the PoA, suggesting
that beyond a certain level of rationality, further increases do not significantly
impact attackers’ efficiency.

In summary, these findings suggest that in highly uncertain and partially
observable environments, incorporating bounded rationality and occasional ran-
domization can enhance the defender’s effectiveness. The significant positive cor-
relation between λ and defender utility in the lowest λ range highlights the im-
portance of stochastic elements in defensive strategies. However, as λ increases
beyond a certain point, its impact on defender performance diminishes, indicat-
ing that playing more rationally does not always yield better results in these
complex highly partially observable scenarios.

4 Conclusion and Future Work

In this work, I aimed to explore the augmented Quantal Response Model as a
decision-making strategy in one vs. many Stackelberg security games. I explored
how modeling different levels of bounded rationality can affect the mixed strate-
gies played in these games, and through this, I examined how playing with more
bounded rationality can affect the outcomes of the games of very partial infor-
mation. I found through running many simulations that, λ although having a
high correlation with defender utility at low bounded rationality levels, does not
have much of an impact at higher levels and does not change much. But I also
found, across the board, I was able to play strategies that induced the attackers
to converge to non-optimal strategies relative to what they could have played.

4.1 Future Work

There are many directions one can take in experimenting here, as this was an
initial exploration with some interesting results. The first direction identified is
another subfield of game theory, called pursuer-evader games or differentiable
game theory, for example [5], and [1]. Specifically, using Hamilton-Jacobi-Issac
(HJI) equations to model this and develop much more rigorous strategies for
affecting attackers [2] in a dynamical system setting. One other direction is now
having smarter attacking agents; now they can work together, have memory,
even be trained AI agents; can the Quantal Response Model hold up against
these agents. Finally, applying more reinforcement learning or adaptive control
techniques to explore deception is one area under investigation as well.
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A.2 Game Setup

Consider a game with n attackers (players) and t targets (resources). Let yij
represent the strategy of player i attacking target j (a probability under mixed
strategies), and let nj be the number of players attacking target j.

A.3 Utility Function

The utility of attacker i for target j is:

Uij(x̂j , nj) = (1− x̂j) ·Rj − x̂j · P j
a − cj · nj . (2)

The expected utility of attacker i under mixed strategy yi is

Ui(yi) =

t∑
j=1

yij · Uij(x̂j , nj). (3)

A.4 Potential Function

Define

Φ(y) =

t∑
j=1

n∑
i=1

yij · Uij(x̂j , nj). (4)

This function aggregates utilities across players and targets and internalizes con-
gestion costs.

A.5 Proof of Lemma 1

A game is an exact potential game if there exists Φ such that, for any unilateral
deviation of player i from yi to y′i, the change in their utility equals the change
in Φ.

Change in player i’s utility. Let y and y′ differ only in player i’s strategy. Then

∆Ui = Ui(y
′
i)− Ui(yi)

=

t∑
j=1

[
y′ij · Uij(x̂j , n

′
j)− yij · Uij(x̂j , nj)

]
=

t∑
j=1

(y′ij − yij) ·
[
(1− x̂j) ·Rj − x̂j · P j

a − cj · (n′
j − nj)

]
, (5)

where n′
j is the number of attackers for target j under y′.
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Change in the potential.

∆Φ = Φ(y′)− Φ(y)

=

t∑
j=1

(
n∑

k=1

y′kj · Ukj(x̂j , n
′
j)−

n∑
k=1

ykj · Ukj(x̂j , nj)

)

=

t∑
j=1

(y′ij − yij) ·
[
(1− x̂j) ·Rj − x̂j · P j

a − cj · (n′
j − nj)

]
, (6)

since the strategies of players k ̸= i do not change.

Equality. Comparing the two expressions gives

∆Ui = ∆Φ, (7)

which establishes that the attackers’ congestion subgame is an exact potential
game.

Notes.

– Φ aggregates utilities over all players and targets (hence two summations),
whereas Ui only aggregates attacker i’s utilities.

– The equality ∆Ui = ∆Φ is the defining property of an exact potential game.
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